
www.manaraa.com

A Different Approach to the
Design and Analysis of Network Algorithms

Assaf Kfoury∗
Boston University

kfoury@bu.edu

Saber Mirzaei∗
Boston University
smirzaei@bu.edu

March 4, 2013

Abstract

We review elements of a typing theory for flow networks, which we expounded in an earlier report [19]. To
illustrate the way in which this typing theory offers an alternative framework for the design and analysis of
network algorithms, we here adapt it to the particular problem of computing a maximum-value feasible flow.
The result of our examination is a max-flow algorithm which, for particular underlying topologies of flow
networks, outperforms other max-flow algorithms. We point out, and leave for future study, several aspects
that will improve the performance of our max-flow algorithm and extend its applicability to a wider class of
underlying topologies.

∗Partially supported by NSF award CCF-0820138.

i



www.manaraa.com

Contents

1 Introduction 1

2 Flow Networks 4

3 Network Typings 5

4 Valid Typings and Principal Typings 8

5 A ‘Whole-Network’ Algorithm for Computing the Principal Typing 11

6 Assembling Network Components 12

7 Parallel Addition 15

8 Binding Input-Output Pairs 16

9 A ‘Compositional’ Algorithm for Computing the Principal Typing 20

10 A ‘Compositional’ Algorithm for Computing the Maximum-Flow Value 23

11 Special Cases 24

12 Future Work 27

ii



www.manaraa.com

1 Introduction

Background and motivation. The background to this report is a group effort to develop an integrated en-
viroment for system modeling and system analysis that are simultaneously: modular (“distributed in space”),
incremental (“distributed in time”), and order-oblivious (“components can be modeled and analyzed in any
order”). These are the three defining properties of what we call a seamlessly compositional approach to system
modeling and system analysis.1 Several papers explain how this environment is defined and used, as well as its
current state of development and implementation [3, 4, 5, 17, 18, 24]. An extra fortuitous benefit of our work
on system modeling has been a fresh perspective on the design and analysis of network algorithms.

To illustrate our methodology, we consider the classical max-flow problem. A solution for this problem is
an algorithm which, given an arbitrary network N with one source node s and one sink node t, computes a
maximal feasible flow f from s to t in N . That f is a feasible flow means f is an assignment of non-negative
values to the arcs of N satisfying capacity constraints at every arc and flow conservation at every node other
than s and t. That f is maximal means the net outflow at node s (equivalently, the net inflow at node t) is
maximized. A standard assessment of a max-flow algorithm measures its run-time complexity as a function
of the size of N . Our methodology is broader, in that it can be applied again to tackle other network-related
problems with different measures of what qualifies as an acceptable solution.

Starting with the algorithm of Ford and Fulkerson in the 1950’s [9], several different solutions have been
found for the max-flow problem, based on the same fundamental concept of augmenting path. A refinement
of the augmenting-path method is the blocking flow method [7], which several researchers have used to devise
better-performing algorithms. Another family of max-flow algorithms uses the so-called preflow push method
(also called push relabel method), initiated by Goldberg and Tarjan in the 1980’s [10, 14]. A survey of these
families of max-flow algorithms to the end of the 1990’s can be found in several reports [2, 11]. Further
developments introduced variants of the augmenting-path algorithms and the closely related blocking-flow
algorithms, variants of the preflow-push algorithms, and algorithms combining different parts of all of these
methodologies [12, 13, 21, 22]. More recently, an altogether different approach to the max-flow problem uses
the notion of pseudoflow [6, 15].

The design and analysis of any of the forementioned algorithms presumes that the given network N is
known in its entirety. No design of an algorithm and its analysis are undertaken until all the pieces (nodes,
arcs, and their capacities) are in place. We may therefore qualify such an approach to design and analysis as a
whole-network approach.

Overview of our methodology. The central concept of our approach is what we call a network typing. To
make this work, a network (or network component) N is allowed to have “dangling arcs”; in effect, N is
allowed to have multiple sources or input arcs (i.e., arcs whose tails are not incident on any node) and multiple
sinks or output arcs (i.e., arcs whose heads are not incident on any node). Given a network N , now with
multiple input arcs and multiple output arcs, a typing for N is a formal algebraic characterization of all the
feasible flows in N – including, in particular, all maximal feasible flows.

More precisely, a valid typing T for networkN specifies conditions on input/output arcs ofN such that ev-
ery assignment f of values to the input/output arcs satisfying these conditions can be extended to a feasible flow
g in N . Moreover, if the input/output conditions specified by T are satisfied by every input/output assignment
f extendable to a feasible flow g, then we say that T is not only valid but also principal for N .

In our formulation, a typing T for networkN defines a bounded convex polyhedral set (or polytope), which
we denote Poly(T), in the vector space Rk+`, where R is the set of reals, k the number of input arcs inN , and `
the number of output arcs inN . An input/output function f satisfies T if f viewed as a point in the space Rk+`

1This is one of the projects currently in progress under the umbrella of the iBench Initiative at Boston University, co-directed by
Azer Bestavros and Assaf Kfoury. The website https://sites.google.com/site/ibenchbu/ gives further details on this
and other research activities.

1



www.manaraa.com

is inside Poly(T). Hence, T is a valid typing (resp. principal typing) for N if Poly(T) is contained in (resp.
equal to) the set of all input/output functions that can be extended to feasible flows.2

Let T1 and T2 be principal typings for networks N1 and N2. If we connect N1 and N2 by linking some of
their output arcs to some of their input arcs, we obtain a new network which we denote (only in this introduction)
N1 ⊕ N2. One of our results shows that the principal typing of N1 ⊕ N2 can be obtained by direct (and
relatively easy) algebraic operations on T1 and T2, without any need to re-examine the internal details of the
two components N1 and N2. Put differently, an analysis (to produce a principal typing) for the assembled
network N1 ⊕N2 can be directly and easily obtained from the analysis of N1 and the analysis of N2.

What we have just described is the counterpart of what type theorists of programming languages call a
modular (or syntax-directed) analysis (or type inference) – which infers a type for the whole program from the
types of its subprograms, and the latter from the types of their respective subprograms, and so on recursively,
down to the types of the smallest program fragments.

Because our network typings denote polytopes, we can in fact make our approach not only modular but
also compositional, in the following sense. If T1 and T2 are principal typings for networks N1 and N2, then
neither T1 nor T2 depends on the other; that is, the analysis (to produce T1) forN1 and the analysis (to produce
T2) forN2 can be carried out independently of each other without knowledge that the two will be subsequently
assembled together.3

Given a network N partitioned into finitely many components N1,N2,N3, . . . with respective principal
typings T1, T2, T3, . . ., we can then assemble these typings in any order – first in pairs, then in sets of four, then in
sets of eight, etc. – to obtain a principal typing T for the whole ofN . Efficiency in computing the final principal
typing T depends on a judicious partitioning ofN , which is to decrease as much as possible the number of arcs
running between separate components, and again recursively when assembling larger components from smaller
components. At the end of this procedure, every input/output function f extendable to a maximal feasible flow
g in N can be directly read off the final typing T – but observe: not g itself.

In contrast to the prevailing whole-network approaches, we call ours a compositional approach to the design
and analysis of max-flow algorithms.

Highlights. Our main contribution is therefore a different framework for the design and analysis of network
algorithms, which we here illustrate by presenting a new algorithm for the classical problem of computing a
maximum flow. Our final algorithm combines several intermediate algorithms, each of independent interest for
computing network typings. We mention some salient features distinguishing our approach from others:

1. As formulated in this report and unlike other approaches, our final algorithm returns only the value of a
maximum flow, without specifying a set of actual paths from source to sink that will carry such a flow.
Other approaches handle the two problems simultaneously: Inherent in their operation is that, in order
to compute a maximum-flow value, they need to determine a set of maximum-flow paths; ours does not
need to. Though avoided here because of the extra cost and complications for a first presentation, our
final algorithm can be adjusted to return a set of maximum-flow paths in addition to a maximum-flow
value.

2Note on terminology: Our choice of the names “type” and “typing” is not coincidental. They refer to notions in our examination
which are equivalent to notions by the same names in the study of strongly-typed programming languages. The type system of a
strongly-typed language – object-oriented such as Java, or functional such as Standard ML or Haskell – consists of formal logical
annotations enforcing safety conditions as invariants across interfaces of program components. In our examination here too, “type”
and “typing” will refer to formal annotations (now based on ideas from linear algebra) to enforce safety conditions (now limited to
feasibility of flows) across interfaces of network components. We take a flow to be safe iff it is feasible.

3In the study of programming languages, there are syntax-directed, inductively defined, type systems that support modular but not
compositional analysis. What is compositional is modular, but not the other way around. A case in point is the so-called Hindley-Milner
type system for ML-like functional languages, where the order matters in which types are inferred.

2



www.manaraa.com

2. We view the uncoupling of the two problems just described as an advantage. It underlies our need to be
able to replace components – broken or defective – by other components as long as their principal typings
are equal, without regard to how they may direct flow internally from input ports to output ports.

3. As far as run-time complexity is concerned, our final algorithm performs very badly on some networks,
e.g., networks whose graphs are dense. However, on other special classes of networks, ours outperforms
the best currently available algorithms (e.g., on networks whose graphs are outer-planar or whose graphs
are topologically equivalent to some ring graphs).

4. In all cases, our algorithms do not impose any restrictions on flow capacities, in contrast to some of the
best-performing algorithms of other approaches. In this report, flow capacities can be arbitrarily large or
small, independent of each other, and not restricted to integral values.

5. Our final algorithm, just like all the intermediate algorithms on which it depends, does not rely on any
standard linear-programming procedure. More precisely, although our final algorithm carries out some
linear optimization, i.e., minimizing or maximizing linear objectives relative to linear constraints, these
objectives and constraints are so limited in their form that optimization need not use anything more than
addition, subtraction, comparison of numbers, and very simple reasoning of elementary linear algebra.

Organization of the report. Sections 2, 3, and 4, are background material, where we fix our notation regard-
ing standard notions of flow networks as well as introduce new notions regarding typings.

Section 5 presents a simple, but expensive, algorithm for computing the principal typing of an arbitrary
flow network N , which we call WholePT. It provides a point of comparison for algorithms later in the report.
WholePT is our only algorithm that operates in “whole-network” mode, in the sense explained above, and that
produces its result using standard linear-programming procedures.

In Sections 6, 7, and 8, we present our methodology for breaking up a flow networkN into one-node com-
ponents at an initial stage, and then gradually re-assembling N from these components. This part of the report
includes algorithms for producing principal typings of one-node networks, and then producing the principal
typings of intermediate network components, each obtained by re-connecting an arc that was disconnected at
the initial stage.

Section 9 presents algorithm CompPT which combines the algorithms of the preceding three sections and
computes the principal typing of a flow network N in “compositional” mode. In addition to N , algorithm
CompPT takes a second argument, which we call a binding schedule; a binding schedule σ dictates the order
in which initially disconnected arcs are re-connected and, as a result, determines the run-time complexity of
CompPT which, if σ is badly selected, can be excessive.

Algorithm CompMaxFlow in Section 10 calls CompPT as a subroutine to compute a maximum-flow
value. The run-time complexity of CompMaxFlow therefore depends on the binding schedule σ that is used as
the second argument in the call to CompPT.

Acknowledgments. The work reported herein is a fraction of a collective effort involving several people, un-
der the umbrella of the iBench Initiative at Boston University, co-directed by Azer Bestavros and Assaf Kfoury.
The website https://sites.google.com/site/ibenchbu/ gives a list of current and past partici-
pants, and research activities. Several iBench participants were a captive audience for partial presentations of
the included material, in several sessions over the last two years. Special thanks are due to them all.

3



www.manaraa.com

2 Flow Networks

We repeat standard notions of flow networks [1] using our notation and terminology. We take a flow network
N as a pair N = (N,A), where N is a finite set of nodes and A a finite set of directed arcs, with each arc
connecting two distinct nodes (no self-loops). We write R and R+ for the sets of reals and non-negative reals,
respectively. Such a flow network N is supplied with capacity functions on the arcs:

• Lower-bound capacity c ∶A→ R+.

• Upper-bound capacity c ∶A→ R+.

We assume 0 ⩽ c(a) ⩽ c(a) and c(a) ≠ 0 for every a ∈A. We identify the two ends of an arc a ∈A by writing
tail(a) and head(a), with the informal understanding that flow “moves” from tail(a) to head(a). The set A
of arcs is the disjoint union – written “⊎” whenever we want to make it explicit – of three sets: the set A# of
internal arcs, the set Ain of input arcs, and the set Aout of output arcs:

A = A# ⊎Ain ⊎Aout where

A# ∶= {a ∈A ∣ head(a) ∈N and tail(a) ∈N},
Ain ∶= {a ∈A ∣ head(a) ∈N and tail(a) /∈N},
Aout ∶= {a ∈A ∣ head(a) /∈N and tail(a) ∈N}.

The tail of any input arc is not attached to any node, and the head of an output arc is not attached to any node.
Since there are no self-loops, head(a) ≠ tail(a) for all a ∈A#.

We assume that N ≠ ∅, i.e., there is at least one node in N, without which there would be no input arc, no
output arc, and nothing to say. We do not assume N is connected as a directed graph – an assumption often
made in studies of network flows, which is sensible when there is only one input arc (or “source node”) and
only one output arc (or “sink node”).4

A flow f in N is a function that assigns a non-negative real number to every a ∈ A. Formally, a flow is a
function f ∶A→ R+ which, if feasible, satisfies “flow conservation” and “capacity constraints” (below).

We call a bounded, closed interval [r, r′] of real numbers (possibly negative) a type, and we call a typing a
partial map T (possibly total) that assigns types to subsets of the input and output arcs. Formally, T is of the
following form, where Ain,out =Ain ∪Aout:

T ∶ P(Ain,out) → I(R)

where P( ) is the power-set operator, P(Ain,out) = {A ∣A ⊆ Ain,out}, and I(R) is the set of bounded, closed
intervals of reals:

I(R) ∶= { [r, r′] ∣ r, r′ ∈ R and r ⩽ r′ }.

As a function, T is not totally arbitrary and satisfies certain conditions, discussed in Section 3, which qualify it
as a network typing. Henceforth, we use the term “network” to mean “flow network” in the sense just defined.

Flow Conservation, Capacity Constraints, Type Satisfaction. Though obvious and entirely standard, we
precisely state fundamental concepts to fix our notation for the rest of the report, in Definitions 1, 2, 3, and 4.

Definition 1 (Flow Conservation). If A is a subset of arcs inN and f a flow inN , we write ∑ f(A) to denote
the sum of the flows assigned to all the arcs in A:

∑ f(A) ∶= ∑{ f(a) ∣ a ∈ A}.
4Presence of multiple sources and multiple sinks is not incidental, but crucial to the way we develop and use our typing theory.

4



www.manaraa.com

By convention, ∑∅ = 0. If A = {a1, . . . , ap} is the set of arcs entering a node ν, and B = {b1, . . . , bq} the set
of arcs exiting ν, conservation of flow at ν is expressed by the linear equation:

(1) ∑ f(A) = ∑ f(B).

There is one such equation Eν for every node ν ∈ N and E = {Eν ∣ ν ∈ N} is the collection of all equations
enforcing flow conservation in N . ◻

Note that we do not distinguish some nodes as “sources” and some other nodes as “sinks”. The role of a
“source” (resp. “sink”) is assumed by an input arc (resp. output arc). Thus, flow conservation must be satisfied
at all the nodes, with no distinction between them.

Definition 2 (Capacity Constraints). A flow f satisfies the capacity constraints at arc a ∈A if:

c(a) ⩽ f(a) ⩽ c(a).(2)

There are two such inequalitiesCa for every arc a ∈A and C = {Ca ∣ a ∈A} is the collection of all inequalities
enforcing capacity constraints in N . ◻
Definition 3 (Feasible Flows). A flow f is feasible iff two conditions:

• for every node ν ∈N, the equation in (1) is satisfied,

• for every arc a ∈A, the two inequalities in (2) are satisfied,

following standard definitions of network flows. ◻
Definition 4 (Type Satisfaction). Let N be a network with input/output arcs Ain,out = Ain ⊎ Aout, and let
T ∶ P(Ain,out) → I(R) be a typing over Ain,out. We say the flow f satisfies T if, for every A ∈ P(Ain,out) for
which T (A) is defined with T (A) = [r, r′], it is the case that:

r ⩽ ∑ f(A ∩Ain) − ∑ f(A ∩Aout) ⩽ r′.(3)

We often denote a typing T for N by simply writing N ∶ T . ◻

3 Network Typings

Let A =A#⊎Ain⊎Aout be the set of arcs in a networkN , with Ain = {a1, . . . , ak} and Aout = {ak+1, . . . , ak+`},
where k, ` ⩾ 1. Throughout this section, we make no mention of the network N and it internal arcs A#, and
only deal with functions from P(Ain,out) to I(R) where, as in Section 2, we pose Ain,out = Ain ⊎Aout.5 We
always call a map T , possibly partial, of the form:

T ∶ P(Ain,out) → I(R)

a typing over Ain,out. Such a typing T defines a convex polyhedral set, which we denote Poly(T ), in the
Euclidean hyperspace Rk+`, as we explain next. We think of the k + ` arcs in Ain,out as the dimensions of the
space Rk+`, and we use the arc names as variables to which we assign values in R. Poly(T ) is the intersection
of at most 2 ⋅ (2k+` − 1) halfspaces, because there are (2k+` − 1) non-empty subsets in P(Ain,out) and each
induces two inequalities, as follows. Let ∅ ≠ A ⊆Ain,out with:

A ∩Ain = {b1, . . . , bp} and A ∩Aout = {bp+1, . . . , bp+q},
5The notation “Ain,out” is ambiguous, because it does not distinguish between input and output arcs. We use it nonetheless for

succintness. The context will always make clear which members of Ain,out are input arcs and which are output arcs.

5



www.manaraa.com

where 1 ⩽ p + q ⩽ k + `. Suppose T (A) is defined and let T (A) = [r, r′]. Corresponding to A, there are two
linear inequalities in the variables {b1, . . . , bp+q}, denoted Tmin⩾ (A) and Tmax⩽ (A):

Tmin
⩾ (A): b1 +⋯ + bp − bp+1 −⋯ − bp+q ⩾ r or, more succintly, ∑(A ∩Ain) −∑(A ∩Aout) ⩾ r(4)

Tmax
⩽ (A): b1 +⋯ + bp − bp+1 −⋯ − bp+q ⩽ r′ or, more succintly, ∑(A ∩Ain) −∑(A ∩Aout) ⩽ r′

and, therefore, two halfspaces Half(Tmin⩾ (A)) and Half(Tmax⩽ (A)) in Rk+` defined by:

Half(Tmin
⩾ (A)) ∶= {r ∈ Rk+` ∣ r satisfies Tmin

⩾ (A) },(5)

Half(Tmax
⩽ (A)) ∶= {r ∈ Rk+` ∣ r satisfies Tmax

⩽ (A) }.

We can therefore define Poly(T ) formally as follows:

Poly(T ) ∶= ⋂{Half(Tmin
⩾ (A)) ∩ Half(Tmax

⩽ (A)) ∣ ∅ ≠ A ⊆Ain,out and T (A) is defined}

For later reference, we write Constraints(T ) for the set of all inequalities/constraints that define Poly(T ):

Constraints(T ) ∶= {Tmin
⩾ (A) ∣ ∅ ≠ A ⊆Ain,out and T (A) is defined}(6)

∪ {Tmax
⩽ (A) ∣ ∅ ≠ A ⊆Ain,out and T (A) is defined}.

We sometimes write Poly(Constraints(T )) instead of Poly(T ) if we need to make explicit reference to the
inequalities induced by T . A (k + `)-dimensional point r = ⟨r1, . . . , rk+`⟩ defines a function f ∶ Ain,out → R
with f(a1) = r1, . . . , f(ak+`) = rk+`. By a slight abuse of notation, we can therefore write f ∈ Poly(T ) to
mean that r = ⟨r1, . . . , rk+`⟩ ∈ Poly(T ). If A ⊆ Ain,out, we write [[[Poly(T )]]]A for the projection of Poly(T ) on
the subset A of the (k + `) arcs/coordinates:

[[[Poly(T )]]]A ∶= { [[[f]]]A ∣ f ∈ Poly(T ) }

where [[[f]]]A is the restriction of f to the subset A.

We can view a typing T as a syntactic expression, with its semantics Poly(T ) being a polytope in Euclidean
hyperspace. As in other situations connecting syntax and semantics, there are generally distinct typings T and
T ′ such that Poly(T ) = Poly(T ′). This is an obvious consequence of the fact that the same polytope can be
defined by many different equivalent sets of linear inequalities, which is the source of some complications when
we combine two typings to produce a new one.

If T and U are typings over Ain,out, we write T ≡ U whenever Poly(T ) = Poly(U), in which case we say
that T and U are equivalent.

Definition 5 (Tight Typings). Let T be a typing over Ain,out. T is tight if, for every A ∈ P(Ain,out) for which
T (A) is defined and for every r ∈ T (A), there is an IO function f ∈ Poly(T ) such that

r = ∑ f(A ∩Ain) −∑ f(A ∩Aout).

Informally, T is tight if none of the intervals/types assigned by T to members of P(Ain,out) contains redundant
information.6 ◻

6There are different equivalent ways of defining “tightness”. Let Constraints(T ) be the set of inequalities induced by T , as in (6)
above. Let Tmin

= (A) and Tmax
= (A) be the equations obtained by turning “⩾” and “⩽” into “=” in the inequalities Tmin

⩾ (A) and Tmax
⩽ (A)

in Constraints(T ). Using the terminology of [23], pp 327, we say Tmin
= (A) is active for Poly(T ) if Tmin

= (A) defines a face of Poly(T ),
and similarly for Tmax

= (A). We can then say that T is tight if, for every Tmin
⩾ (A) and every Tmax

⩽ (A), the corresponding Tmin
= (A) and

Tmax
= (A) are active for Poly(T ).

6



www.manaraa.com

Let T be a typing over Ain,out and A ⊆ Ain,out. If T (A) is defined with T (A) = [r1, r2] for some r1 ⩽ r2,
we write Tmin(A) and Tmax(A) to denote the endpoints of T (A):

Tmin(A) = r1 and Tmax(A) = r2.

The following is sometimes an easier-to-use characterization of tight typings.

Proposition 6 (Tightness Defined Differently). Let T ∶ P(Ain,out) → I(R) be a typing. T is tight iff, for every
A ⊆Ain,out for which T (A) is defined, there are f1, f2 ∈ Poly(T ) such that:

Tmin(A) = ∑ f1(A ∩Ain) −∑ f1(A ∩Aout),

Tmax(A) = ∑ f2(A ∩Ain) −∑ f2(A ∩Aout).

Proof. The left-to-right implication follows immediately from Definition 5. The right-to-left implication is a
staightforward consequence of the linearity of the constraints that define T .

Proposition 7 (Every Typing Is Equivalent to a Tight Typing). There is an algorithm Tight which, given a
typing T as input, always terminates and returns an equivalent tight (and total) typing Tight(T ).

Proof. Starting from the given typing T ∶ P(Ain,out) → I(R), we first determine the set of linear inequal-
ities Constraints(T ) that defines Poly(T ), as given in (6) above. We compute a total and tight typing T ′ ∶
P(Ain,out) → I(R) by assigning an appropriate interval/type T ′(A) to every A ∈ P(Ain,out) as follows. For
such a set A of input/output arcs, let θ(A) be the objective function:

θ(A) ∶= ∑A ∩Ain −∑A ∩Aout.

Relative to Constraints(T ), using standard procedures of linear programming, we minimize and maximize
θ(A) to obtain two values r1 and r2, respectively. The desired type T ′(A) is [r1, r2] and the desired Tight(T )
is T ′.

Proposition 8 (Tightness Inherited Downward). Let T,U ∶ P(Ain,out) → I(R) be typings such that T ⊆ U ,
i.e., U extends T . If U is tight, then so is T tight.

Proof. Two preliminary observations, both following from T ⊆ U :

1. For every A ∈ P(Ain,out), if T (A) is defined, so is U(A) defined with T (A) = U(A).

2. Poly(T ) ⊇ Poly(U), because Constraints(T ) ⊆ Constraints(U).

We need to show that for every A ∈ P(Ain,out) for which T (A) is defined and for every r ∈ T (A), there is an
IO function f ∈ Poly(T ) such that the following equation holds:

r = ∑ f(A ∩Ain) −∑ f(A ∩Aout).

If T (A) is defined, then U(A) is defined, and if r ∈ T (A), then r ∈ U(A), by observation 1. Because U is
tight, there is f ∈ Poly(U) such that the preceding equation holds. But f ∈ Poly(U) implies f ∈ Poly(T ), by
observation 2, from which the desired conclusion follows.

7



www.manaraa.com

4 Valid Typings and Principal Typings

We relate typings, as defined in Section 3, to networks.

Definition 9 (Input-Output Functions). Let A = A# ⊎ Ain ⊎ Aout be the set of arcs in a network N , with
Ain,out =Ain ⊎Aout its set of input/output arcs. We call a function f ∶Ain,out → R+ an input-output function, or
just IO function, for N .

If g ∶A→ R+ is a flow inN , then [[[g]]]Ain,out
, the restriction of g to Ain,out, is an IO function. We say that an

IO function f ∶Ain,out → R+ is feasible if there is a feasible flow g ∶A→ R+ such that f = [[[g]]]Ain,out
.

A typing T ∶ P(Ain,out) → I(R) forN is defined independently of the internal arcs A#. Hence, the notion
of satisfaction of T by a flow g as in Definition 4 directly applies to an IO function f , with no change. More
succintly, the flow g satisfies T iff [[[g]]]Ain,out

∈ Poly(T ) whereas the IO function f satisfies T iff f ∈ Poly(T ). ◻
Let N and T be a network and a typing as in Definition 9. We say T is a valid typing for N , sometimes

denoted (N ∶ T ), if it is sound in the following sense:

(soundness) Every IO function f ∶Ain,out → R+ satisfying T can be extended to a feasible flow g ∶A→ R+.

We say the typing (N ∶ T ) is a principal typing for the network N , if it is both sound and complete:

(completeness) Every feasible flow g ∶A→ R+ satisfies T .

Any two principal typings T and U for the same network are not necessarily identical, but they always
denote the same polytope, as formally stated in the next proposition. First, a lemma of more general interest.

Lemma 10. Let (N ∶ T ) and (N ∶ T ′) be typings for the same N . If T and T ′ are tight, total, and T ≡ T ′,
then T = T ′.

Proof. This follows from the construction in the proof of Proposition 7, where Tight(T ) returns a typing which
is both total and tight (and equivalent to T ).

Proposition 11 (Principal Typings Are Equivalent). If (N ∶ T ) and (N ∶ U) are two principal typings for the
same network N , then T ≡ U . Moreover, if T and U are tight and total, then T = U .

Proof. If both (N ∶ T ) and (N ∶ U) are principal typing, then Poly(T ) = Poly(U), so that also T ≡ U . When
T and U are tight and total, then the equality T = U follows from Lemma 10.

Based on the preceding, we can re-state the definition of principal typing as follows. Typing T is principal
for network N if both:

Poly(T ) ⊆ { f ∶Ain,out → R+ ∣ f feasible in N } (soundness),

Poly(T ) ⊇ { f ∶Ain,out → R+ ∣ f feasible in N } (completeness).

Restriction 12. In the rest of this report, every typing T ∶ P(Ain,out) → I(R) will be equivalent to a typing
T ′ ∶ P(Ain,out) → I(R), including the possibility that T = T ′, such that two requirements are satisfied:

1. T ′(∅) = T ′(Ain,out) = [0,0] = {0}. Informally, T ′(Ain,out) = {0} expresses global flow conservation:
The total amount entering a network must equal the total amount exiting it.

2. T ′ is defined for every singleton subset A ⊆ Ain,out. Moreover, there is a “very large” number K such
that for every singleton A ⊆Ain (resp. A ⊆Aout), it holds that T ′(A) ⊆ [0,K] (resp. T ′(A) ⊆ [−K,0]),
i.e., the value of a feasible flow on any outer arc is between 0 and K.

8



www.manaraa.com

A consequence of the second requirement is that Poly(T ) is inside the (k+`)-dimensional hypercube [0,K]k+`,
thus entirely contained in a bounded part of the first orthant of the hyperspace Rk+`. Poly(T ) is thus a bounded
subset of Rk+`, and therefore a convex polytope, rather than just a convex polyhedral set. ◻

We include a few facts about typings that we use in later sections. These are solely about typings and make
no mention of a network N and its set A# of internal arcs.

If [r, s] is an interval of real numbers for some r ⩽ s, we write −[r, s] to denote the interval [−s,−r]. This
implies the following:

−[r, s] = { t ∈ R ∣ − s ⩽ t ⩽ −r } = {−t ∈ R ∣ t ∈ [r, s] }

Recall that Constraints(T ) denote the set of linear inequalities induced by a typing T , as in (6) in Section 3.

Proposition 13. Let T ∶ P(Ain,out) → I(R) be a tight typing such that T (∅) = T (Ain,out) = [0,0].
Conclusion: For every two-part partitionA⊎B =Ain,out, if T (A) and T (B) are defined, then T (A) = −T (B).

Proof. One particular case in the conclusion is when A = ∅ and B = Ain,out, so that trivially A ⊎B = Ain,out,
which also implies T (A) = −T (B). Because T (Ain,out) = [0,0] and T is tight, we have that:

0 ⩽ ∑{a ∣ a ∈Ain } − ∑{a ∣ a ∈Aout } ⩽ 0

are among the inequalities in Constraints(T ). Consider arbitrary ∅ ≠ A,B ⊊ Ain,out such that A ⊎B = Ain,out
and both T (A) and T (B) are defined. For every f ∈ Poly(T ), we can therefore write the equation:

∑ f(A ∩Ain) + ∑ f(B ∩Ain) − ∑ f(A ∩Aout) − ∑ f(B ∩Aout) = 0

or, equivalently:

(‡) ∑ f(A ∩Ain) − ∑ f(A ∩Aout) = −∑ f(B ∩Ain) + ∑ f(B ∩Aout)

Hence, relative to Constraints(T ), f maximizes (resp. minimizes) the left-hand side of equation (‡) iff f
maximizes (resp. minimizes) the right-hand side of (‡). Negating the right-hand side of (‡), we also have:

f maximizes (resp. minimizes) ∑ f(A ∩Ain) −∑ f(A ∩Aout) if and only if

f minimizes (resp. maximizes) ∑ f(B ∩Ain) −∑ f(B ∩Aout) .

Because T is tight, by Proposition 6, every point f ∈ Poly(T ) which maximizes (resp. minimizes) the objective
function:

θ(A) ∶= ∑ A ∩Ain − ∑ A ∩Aout

must be such that:

Tmax(A) = ∑ f(A ∩Ain) − ∑ f(A ∩Aout)

(resp. Tmin(A) = ∑ f(A ∩Ain) − ∑ f(A ∩Aout))

We can repeat the same reasoning for B. Hence, if f ∈ Poly(T ) maximizes both sides of (‡), then:

Tmax(A) = +∑ f(A ∩Ain) − ∑ f(A ∩Aout)

= −∑ f(B ∩Ain) + ∑ f(B ∩Aout)

= − Tmin(B)

9



www.manaraa.com

and, respectively, if f ∈ Poly(T ) minimizes both sides of (‡), then:

Tmin(A) = +∑ f(A ∩Ain) − ∑ f(A ∩Aout)

= −∑ f(B ∩Ain) + ∑ f(B ∩Aout)

= − Tmax(B)

The preceding implies T (A) = −T (B) and concludes the proof.

Proposition 14. Let T ∶ P(Ain,out) → I(R) be a tight typing such that T (∅) = T (Ain,out) = [0,0].
Conclusion: For every two-part partition A ⊎B =Ain,out, if T (A) is defined and T (B) is undefined, then:

min θ(B) = −Tmax(A) and max θ(B) = −Tmin(A),

where θ(B) ∶= ∑(B ∩Ain) −∑(B ∩Aout) is minimized and maximized, respectively, w.r.t. Constraints(T ).

Hence, if we extend the typing T to a typing T ′ that includes the type assignment T ′(B) ∶= −T (A), then
T ′ is a tight typing equivalent to T .

Proof. If T (A) = [r, s], then r = min θ(A) and s = max θ(A) where θ(A) ∶= ∑(A ∩Ain) − ∑(A ∩Aout) is
minimized/maximized w.r.t. Constraints(T ). Consider the objective Θ ∶= θ(A) + θ(B). Because T (Ain,out) =
[0,0], we have min Θ = 0 = max Θ where Θ is minimized/maximized w.r.t. Constraints(T ). Think of Θ as
defining a line through the origin of the (θ(A), θ(B))-plane with slope −45o with, say, θ(A) the horizontal
coordinate and θ(B) the vertical coordinate. Hence, min θ(B) = −max θ(A) and max θ(B) = −min θ(A),
which implies the desired conclusion.

Definition 15 (True Types). Let T ∶ P(Ain,out) → I(R) be a typing over Ain,out and C = Constraints(T ) the
set of linear inequalities induced by T . For an arbitrary ∅ ≠ A ⊆Ain,out, we define the true type of A relative to
T , denoted TrType(A,T ), as follows:

TrType(A,T ) ∶= [r, s]
where r ∶= min θ(A) w.r.t. C , s ∶= max θ(A) w.r.t. C , and θ(A) ∶= ∑A ∩Ain −∑A ∩Aout.

By Propositions 6 and 7, the typing T is tight iff, for every ∅ ≠ A ⊆Ain,out for which T (A) is defined, we have
T (A) = TrType(A,T ). In words, a tight typing T only assigns true types, although some of these types may
be unnecessary, because they can be omitted without affecting Poly(T ).

We also pose TrType(∅, T ) ∶= [0,0], so that TrType( , T ) is a total function on P(Ain,out). ◻
All typings T in this report will be such that TrType(Ain,out, T ) = [0,0], but note that this does not neces-

sarily mean that T (Ain,out) is defined or, in case T is not tight, that T (Ain,out) = [0,0].

Definition 16 (Components of Typings). Let T ∶ P(Ain,out) → I(R) be a typing over the arcs/coordinates
Ain,out such that TrType(Ain,out, T ) = [0,0]. Let A(1)in,out ⊎⋯ ⊎A

(n)
in,out =Ain,out be the finest partition of Ain,out,

for some n ⩾ 1, satisfying the condition:

TrType(A(i)in,out, T ) = [0,0] for every 1 ⩽ i ⩽ n.

We call the restrictions of T to A
(1)
in,out, . . . ,A

(n)
in,out the components of T . Specifically, the typing Ti defined by:

Ti ∶ P(A(i)in,out) → I(R), where Ti ∶= [[[T ]]]P(A(i)in,out)
,

is a component of T , for every 1 ⩽ i ⩽ n. We also call the set A(i)in,out of arcs/coordinates a component of Ain,out
relative to T , for every 1 ⩽ i ⩽ n. ◻

10



www.manaraa.com

Proposition 17. Let T ∶ P(Ain,out) → I(R) be a typing as in Definition 16, and let A(1)in,out, . . . ,A
(n)
in,out be

the n components of Ain,out relative to T .

Conclusion: For every component A(i)in,out, with 1 ⩽ i ⩽ n, and every two-part partitionA⊎B =A
(i)
in,out, we have

TrType(A,T ) = −TrType(B,T ).

Proof. Straightforward consequence of Propositions 13 and 14. All details omitted.

For later reference, we call a pair of non-empty subsets A,B ∈ P(A(i)in,out) such that A ⊎B = A
(i)
in,out, as in

the conclusion of Proposition 17, T -companions. The components A(1)in,out, . . . ,A
(n)
in,out relative to T , as well as

∅, do not have T -companions.
Later in this report, it will typically be the case that the components of Ain,out relative to a typing T contain

each at least two arcs/coordinates. In such a case, every ∅ ≠ A ⊊ A
(i)
in,out, where 1 ⩽ i ⩽ n, has a uniquely

defined T -companion B.

5 A ‘Whole-Network’ Algorithm for Computing the Principal Typing

Let N = (N,A) be a network. We follow the notation and conventions of Section 3 throughout. Let E be
the collection of all equations enforcing flow conservation, and C the collection of all inequalities enforcing
capacity constraints, inN . Algorithm 1 gives the pseudocode of a procedure WholePT which computes a tight,
total, and principal typing for N , when N can be given at once in its entirety as a whole network. Theorem 18
asserts the correctness of WholePT.

Algorithm 1 Calculate Tight, Total, and Principal Typing for Network N in Whole-Network Mode

algorithm name: WholePT
input: flow network N = (N,A)
output: tight, total, and principal typing T for N

1: E ∶= {flow-conservation equations for N}
2: C ∶= {capacity-constraint inequalities for N}
3: T (∅) ∶= {0}
4: for every ∅ ≠ A ⊆Ain,out do
5: θ(A) ∶= ∑(A ∩Ain) −∑(A ∩Aout)
6: r1 ∶= minimum of objective θ(A) relative to E ∪C

7: r2 ∶= maximum of objective θ(A) relative to E ∪C

8: T (A) ∶= [r1, r2]
9: end for

10: return T

We write WholePT(N) for the result of applying WholePT to the network N . Let T = WholePT(N).
Let f ∶A→ R+ be a feasible flow in network N . It follows that f satisfies every equation and every inequality
in E ∪ C . Hence, for every A ⊆ Ain,out, the value of ∑ f(A ∩Ain) − ∑ f(A ∩Aout) is in the interval T (A),
because this value must occur between the minimum and the maximum of the objective θ(A) relative to E ∪C .

It follows that every feasible IO function is a point in the polytope Poly(T ). This proves one half of the
“principality” of T in Theorem 18 below. The other half of the “principality” of T , namely, every point in
Poly(T ) is a feasible IO function, is a little more involved; its proof is in a companion report [19].

11



www.manaraa.com

Theorem 18 (Inferring Tight, Total, and Principal Typings). The typing T = WholePT(N) is tight, total, and
principal, for network N .

Complexity of WholePT. The run-time complexity of WholePT depends on the linear-programming algo-
rithm used to minimize and maximize the objective θ(A) in lines 6 and 7 in Algorithm 1, which can in principle
be obtained in low-degree polynomial times as functions of ∣Ain,out∣. But the main cost is the result of assigning
a type to every subset A ⊆ Ain,out, for a total of 2∣Ain,out∣ types. We do not analyze the complexity of WholePT
further, because our later algorithms compute tight principal typings far more efficiently.

Example 19. We use procedure WholePT to infer a tight, total, and principal typing T for the network N
shown in Figure 1. There are 8 equations in E enforcing flow conservation, one for each node in N , and
2 ⋅ 16 = 32 inequalities in C enforcing lower-bound and upper-bound constraints, two for each arc in N . We
omit the straightforward E and C .

By inspection, a minimum flow in N pushes 0 units through, and a maximum flow in N pushes 30 units.
The value of all feasible flows in N is therefore in the interval [0,30].

The typing T returned by WholePT(N) in this example is as follows. In addition to T (∅) = [0,0], it
makes the following assignments:

a1 ∶ [0,15] a2 ∶ [0,25] − a3 ∶ [−15,0] − a4 ∶ [−25,0]
a1 + a2 ∶ [0,30] a1 − a3 ∶ [−10,12] a1 − a4 ∶ [−23,15]
a2 − a3 ∶ [−15,23] a2 − a4 ∶ [−12,10] − a3 − a4 ∶ [−30,0]
a1 + a2 − a3 ∶ [0,25] a1 + a2 − a4 ∶ [0,15] a1 − a3 − a4 ∶ [−25,0] a2 − a3 − a4 ∶ [−15,0]
a1 + a2 − a3 − a4 ∶ [0,0]

If we are only interested in computing the value of a maximum feasible flow in N , it suffices to compute the
type [0,30] assigned to {a1, a2} or, equivalently, the type [−30,0] assigned to {a3, a4}. Algorithm WholePT
can be adjusted so that it returns only one of these two types, but then it does not provide enough information
(in the form of a principal typing) if we want to “safely” include N in a larger assembly of networks. ◻

a1 a3

a7

a14

10
8

8

3

2

7

2 10

a5

a2 a4

a6

a8

a9
a10

a11

a12

a13

a15

a16

Figure 1: Network N in Example 19.
Omitted lower-bound capacities are 0, omitted upper-bound capacities are K (a “very large number”).

6 Assembling Network Components

There are two basic ways in which we can assemble and connect networks together:

12



www.manaraa.com

1. LetM andN be two networks, with arcs A =Ain⊎Aout⊎A# and B = Bin⊎Bout⊎B#, respectively. The
parallel addition ofM and N , denoted (M ∥N), simply placesM and N next to each other without
connecting any of their outer arcs. The input and output arcs of (M ∥N) are Ain ⊎Bin and Aout ⊎Bout,
respectively, and its internal arcs are A# ⊎B#.

2. Let N be a network with arcs A = Ain ⊎ Aout ⊎ A#, and let a ∈ Ain and b ∈ Aout. The binding of
output arc b to input arc a in N , denoted Bind({a, b},N), means to connect head(b) to tail(a) and
thus set tail(a) ∶= head(b). The input and output arcs of Bind({a, b},N) are A′

in = Ain − {a} and
A′

out =Aout − {b}, respectively, and its internal arcs are A′
# =A# ∪ {a}, thus keeping a as an internal arc

and eliminating b altogether.

In the parallel-addition operation, there is no change in the capacity functions c and c. In the binding operation
also, there is no change in these functions, except at arc a:

c(a) ∶= max{c(a),c(b)} and c(a) ∶= min{c(a),c(b)}.

Repeatedly using parallel addition and input-output pair binding, we can assemble any network N with n ⩾ 1
nodes and simultaneously compute a tight principal typing for it: We start by breaking N into n separate one-
node networks and then re-assemble them to recover the original topology of N . Assembling the one-node
components together, and simultaneoulsy computing a tight principal typing for N in bottom-up fashion, is
carried out according to the algorithms in Sections 9 and 10.

Algorithm 2 Calculate Tight, Total, and Principal Typing for One-Node Network N
algorithm name: OneNodePT
input: one-node network N with outer arcs Ain,out =Ain ⊎Aout

and lower-bound and upper-bound capacities c,c ∶Ain,out → R+
output: tight, total, and principal typing T ∶ P(Ain,out) → I(R) for N

1: T (∅) ∶= [0,0]
2: T (Ain,out) ∶= [0,0]
3: for every two-part partition A ⊎B =Ain,out with A ≠ ∅ ≠ B do
4: Ain ∶= A ∩Ain; Aout ∶= A ∩Aout

5: Bin ∶= B ∩Ain; Bout ∶= B ∩Aout

6: r1 ∶= −min{∑c(Bin) −∑c(Bout), ∑c(Aout) −∑c(Ain)}
7: r2 ∶= +min{∑c(Ain) −∑c(Aout), ∑c(Bout) −∑c(Bin)}
8: T (A) ∶= [r1, r2]
9: end for

10: return T

Proposition 20 (Tight, Total, and Principal Typings for One-Node Networks). Let N be a network with one
node, input arcs Ain, output arcs Aout, and lower-bound and upper-bound capacities c,c ∶Ain ⊎Aout → R+.

Conclusion: OneNodePT(N) is a tight, total, and principal typing for N .

Proof. Let A ⊎B = Ain,out be an arbitrary two-part partition of Ain,out, with A ≠ ∅ ≠ B. Let Ain ∶= A ∩Ain,

13



www.manaraa.com

Aout ∶= A ∩Aout, Bin ∶= B ∩Ain, and Bout ∶= B ∩Aout. Define the non-negative numbers:

sin ∶= ∑c(Ain) s′in ∶= ∑c(Ain)

sout ∶= ∑c(Aout) s′out ∶= ∑c(Aout)

tin ∶= ∑c(Bin) t′in ∶= ∑c(Bin)

tout ∶= ∑c(Bout) t′out ∶= ∑c(Bout)

Although tedious and long, one approach to complete the proof is to exhaustively consider all possible orderings
of the 8 values just defined, using the standard ordering on real numbers. Cases that do not allow any feasible
flow can be eliminated from consideration; for feasible flows to be possible, we can assume that:

sin ⩽ s′in, sout ⩽ s′out, tin ⩽ t′in, tout ⩽ t′out,

and also assume that:

sin + tin ⩽ s′out + t′out, sout + tout ⩽ s′in + t′in,

thus reducing the total number of cases to consider. We consider the intervals [sin, s
′
in], [sout, s

′
out], [tin, t′in],

and [tout, t
′
out], and their relative positions, under the preceding assumptions. Define the objective θ(A):

θ(A) ∶= ∑Ain −∑Aout.

By the material in Sections 3 and 5, if T is a tight principal typing for N with T (A) = [r1, r2], then r1 is the
minimum possible feasible value of θ(A) and r2 is the maximum possible feasible value of θ(A) relative to
Constraints(T ).

We omit the details of the just-outlined exhaustive proof by cases. Instead, we argue for the correctness of
OneNodePT more informally. It is helpful to consider the particular case when all lower-bound capacities are
zero, i.e., the case when sin = sout = tin = tout = 0. In this case, it is easy to see that:

r1 = −min{∑c(Bin),∑c(Aout)} maximum amount entering at Bin and exiting at Aout,

while minimizing amount entering at Ain,

r2 = +min{∑c(Ain),∑c(Bout)} maximum amount entering at Ain and exiting at Bout,

while minimizing amount exiting at Aout,

which are exactly the endpoints of the type T (A) returned by OneNodePT(N) in the particular case when all
lower-bounds are zero.

Consider now the case when some of the lower-bounds are not zero. To determine the maximum throughput
r2 using the arcs of A, we consider two quantities:

r′2 ∶= ∑c(Ain) −∑c(Aout) and r′′2 ∶= ∑c(Bout) −∑c(Bin).

It is easy to see that r′2 is the flow that is simultaneously maximized at Ain and minimized at Aout, provided that
r′2 ⩽ r′′2 , i.e., the whole amount r′2 can be made to enter at Ain and to exit at Bout. However, if r′2 > r′′2 , then only
the amount r′′2 can be made to enter at Ain and to exit at Bout. Hence, the desired value of r2 is min{r′2, r′′2 },
which is exactly the higher endpoint of the type T (A) returned by OneNodePT(N). A similar argument, here
omitted, is used again to determine the minimum throughput r1 using the arcs of A.

14



www.manaraa.com

Complexity of OneNodePT. We estimate the run-time of OneNodePT as a function of: d = ∣Ain,out∣ ⩾ 2,
the number of outer arcs, also assuming that there is at least one input arc and one output arc inN . OneNodePT
assigns the type/interval [0,0] to ∅ and Ain,out. For every ∅ ≠ A ⊊ Ain,out, it then computes a type [r1, r2],
simultaneously forA and its complementB =Ain,out−A. (ThatB is assigned [−r2,−r1] is not explicitly shown
in Algorithm 2.) Hence, OneNodePT computes (2d − 2)/2 = (2d−1 − 1) such types/intervals, each involving
8 summations and 4 subtractions, in lines 6 and 7, on the lower-bound capacities (d of them) and upper-bound
capacities (d of them) of the outer arcs.

Remark 21. A different version of Algorithm 2 uses linear programming to compute the typing of a one-
node network, but this is an unnecessary overkill. The resulting run-time complexity is also worse than that
of our version here. The linear-programming version works as follows. Let E be the set of flow-conservation
equations and C the set of capacity-constraint inequalities of the one-node network. For every A ∈ P(Ain,out),
we define the objective θ(A) ∶= ∑(A ∩Ain) − ∑(A ∩Aout). The desired type T (A) = [r1, r2] is obtained by
setting: r1 ∶= min θ(A) and r2 ∶= max θ(A), i.e., the objective θ(A) is minimized/maximized relative to E ∪C
using linear programming. ◻

7 Parallel Addition

Given tight principal typings T andU for networksM andN , respectively, we need to compute a tight principal
typing for the parallel addition (M ∥N).

Lemma 22. Let T and U be tight typings over disjoint sets, Ain,out = Ain ⊎Aout and Bin,out = Bin ⊎ Bout,
respectively. The partial addition (T ⊕p U) of T and U is defined as follows. For every A ⊆Ain,out ∪Bin,out:

(T ⊕p U)(A) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[0,0] if A = ∅ or A =Ain,out ∪Bin,out,

T (A) if A ⊆Ain,out and T (A) is defined,

U(A) if A ⊆ Bin,out and U(A) is defined,

undefined otherwise.

Conclusion: (T ⊕p U) is a tight typing over Ain,out ∪Bin,out.

Proof. Straightforward from the definitions. All details omitted.

Proposition 23 (Typing for Parallel Addition). LetM andN be networks with outer arcs Ain,out =Ain ⊎Aout
and Bin,out = Bin ⊎Bout, respectively. Let T and U be tight principal typings forM and N , respectively.

Conclusion: (T ⊕p U) is a tight principal typing for the network (M ∥N).

Proof. By Lemma 22, (T ⊕pU) is a tight typing. That (T ⊕pU) is also principal for (M ∥N) is a straightfor-
ward consequence of the definitions. All details omitted.

The typing (T ⊕p U) is partial even when T and U are total typings. In this report, when assembling
intermediate networks together, we restrict attention to their total typings. In the next lemma, we define the
total addition of total typings which is another total typing. If [r1, s1] and [r2, s1] are intervals of real numbers
for some r1 ⩽ s1 and r2 ⩽ s2, we write [r1, s1] + [r2, s2] to denote the interval [r1 + r2, s1 + s2]:

[r1, s1] + [r2, s2] ∶= { t ∈ R ∣ r1 + r2 ⩽ t ⩽ s1 + s2 }

15



www.manaraa.com

Lemma 24. Let T and U be tight and total typings over disjoint sets of outer arcs, Ain,out = Ain ⊎Aout and
Bin,out = Bin ⊎Bout, respectively. We define the total addition (T ⊕t U) of the typings T and U as follows. For
every A ⊆Ain,out ∪Bin,out:

(T ⊕t U)(A) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

[0,0] if A = ∅ or A =Ain,out ∪Bin,out,

T (A′) +U(A′′) if A = A′ ⊎A′′ with A′ = A ∩Ain,out and A′′ = A ∩Bin,out.

Conclusion: (T ⊕t U) is a tight and total typing over Ain,out ∪Bin,out.

Proof. Straightforward from the definitions, similar to the proof of Lemma 22. All details omitted.

Proposition 25 (Total Typing for Parallel Addition). Let M and N be networks with outer arcs Ain,out =
Ain ⊎Aout and Bin,out = Bin ⊎Bout, respectively. Let T and U be tight, total, and principal typings forM and
N , respectively.

Conclusion: (T ⊕t U) is a tight, total, and principal typing for the network (M ∥N).

Proof. Similar to the proof of Proposition 23. By Lemma 24, (T ⊕tU) is a tight and total typing. That (T ⊕tU)
is also principal for (M ∥N) is a straightforward consequence of the definitions. All details omitted.

8 Binding Input-Output Pairs

Given a tight principal typing T for network N with arcs A = Ain ⊎Aout ⊎A#, together with a ∈ Ain and
b ∈ Aout, we need to compute a tight principal typing T ′ for the network Bind({a, b},N). A straightforward,
but expensive, way of computing T ′ is Algorithm 3. We invoke this algorithm by writing BindOne({a, b}, T ).

Algorithm 3 Bind One Input-Output Pair

algorithm name: BindOne
input: typing T ∶ P(Ain,out) → I(R), not necessarily tight, a ∈Ain, b ∈Aout

output: tight typing T ′ ∶ P(A′
in,out) → I(R)

where A′
in,out =Ain,out − {a, b} and Poly(T ′) = [[[Poly(Constraints(T ) ∪ {a = b})]]]A′in,out

1: T ′(∅) ∶= {0}
2: T ′(A′

in,out) ∶= {0}
3: for every ∅ ≠ A ⊊A′

in,out do
4: θA ∶= ∑(A ∩ (Ain − {a})) −∑(A ∩ (Aout − {b}))
5: r1 ∶= minimum of objective θA relative to Constraints(T ) ∪ {a = b}
6: r2 ∶= maximum of objective θA relative to Constraints(T ) ∪ {a = b}
7: T ′(A) ∶= [r1, r2]
8: end for
9: return T ′

Proposition 26 (Typing for Binding One Input/Output Pair). Let T ∶ P(Ain,out) → I(R) be a principal typing
for network N , with outer arcs Ain,out =Ain ⊎Aout, and let a ∈Ain and b ∈Aout.

Conclusion: BindOne({a, b}, T ) is a tight principal typing for Bind({a, b},N).

16



www.manaraa.com

Proof. If T is a principal typing for N , then Poly(Constraints(T )) is the set of all feasible IO functions in
N , when every IO function is viewed as a point in the hyperspace of dimension k + ` and each dimension is
identified with one of the arcs in Ain,out. Hence, if E is the set of all flow-conservation equations in N and C
the set of all capacity-constraint inequalities in N , we must have:

Poly(Constraints(T )) = [[[Poly(E ∪C )]]]Ain,out
.

Adding the constraint {a = b} to both sides of the preceding equality, we obtain:

Poly(Constraints(T ) ∪ {a = b}) = [[[Poly(E ∪C ∪ {a = b})]]]Ain,out
.

Hence, by the definition of the algorithm BindOne, we also have:

Poly(T ′) = [[[Poly(Constraints(T ) ∪ {a = b})]]]A′in,out
,

which implies that Poly(T ′) = [[[Poly(E ∪ C ∪ {a = b})]]]A′in,out
and that T ′ = BindOne({a, b}, T ) is a principal

typing for the network Bind({a, b},N). We omit the straightforward proof that T ′ is also tight.

Complexity of BindOne. The run-time of BindOne is excessive, because it assigns a type to every subset
A ⊆ A′

in,out, which also makes the typing T ′ returned by BindOne a total typing, even if the initial typing T is
not total. For every A ⊆ A′

in,out, moreover, BindOne invokes a linear-programming algorithm twice, once to
minimize and once to maximize the objective θA.

We do not analyze the complexity of BindOne any further, because it is an unnecessary overkill: We can
compute a tight principal typing for Bind({a, b},N) far more efficiently below.

Algorithm 4 is the efficient counterpart of the earlier Algorithm 3, which now requires restrictions on the
input for correct execution that are unnecessary in the earlier.

Proposition 27 (Typing for Binding One Input/Output Pair – Efficiently). Let T ∶ P(Ain,out) → I(R) be a
tight principal typing for network N , with outer arcs Ain,out =Ain ⊎Aout, and let a ∈Ain and b ∈Aout.

Conclusion: BindOneEff({a, b}, T ) is a tight principal typing for Bind({a, b},N). Moreover, if T is total,
then so is BindOneEff({a, b}, T ) total.

Proof. Consider the intermediate typings T1 and T2 as defined in algorithm BindOneEff:

T1, T2 ∶ P(A′
in,out) → I(R) where A′

in,out =Ain,out − {a, b}.

The definitions of T1 and T2 can be repeated differently as follows. For every A ⊆Ain,out:

T1(A) ∶=
⎧⎪⎪⎨⎪⎪⎩

T (A) if A ⊆A′
in,out and T (A) is defined,

undefined if A /⊆A′
in,out or T (A) is undefined,

T2(A) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

T1(A) if A ⊊A′
in,out and T1(A) is defined,

[0,0] if A =A′
in,out,

undefined if A /⊆A′
in,out or T1(A) is undefined.

If T is tight, then so is T1, by Proposition 8. The only difference between T1 and T2 is that the latter includes
the new type assignment T2(A′

in,out) = [0,0], which is equivalent to the constraint:

∑A′
in −∑A′

out = 0, where A′
in =Ain − {a} and A′

out =Aout − {b},

17



www.manaraa.com

Algorithm 4 Bind One Input-Output Pair Efficiently

algorithm name: BindOneEff
input: tight typing T ∶ P(Ain,out) → I(R), a ∈Ain, b ∈Aout

where for every two-part partition A ⊎B =A′
in,out ∶=Ain,out − {a, b},

either both T (A) and T (B) are defined or both T (A) and T (B) are undefined
output: tight typing T ′ ∶ P(A′

in,out) → I(R)
where Poly(T ′) = [[[Poly(Constraints(T ) ∪ {a = b})]]]A′in,out

Definition of intermediate typing T1 ∶ P(A′
in,out) → I(R)

1: T1 ∶= [[[T ]]]P(A′in,out),
i.e., every type assigned by T to a set A such that A ∩ {a, b} ≠ ∅ is omitted in T1

Definition of intermediate typing T2 ∶ P(A′
in,out) → I(R)

2: T2 ∶= T1[A′
in,out ↦ [0,0]]

i.e., the type assigned by T1 to A′
in,out, if any, is changed to the type [0,0] in T2

Definition of final typing T ′ ∶ P(A′
in,out) → I(R)

3: for every two-part partition A ⊎B =A′
in,out do

4: if T2(A) is defined with T2(A) = [r1, s1] and T2(B) is defined with −T2(B) = [r2, s2] then
5: T ′(A) ∶= [max{r1, r2},min{s1, s2}] ; T ′(B) ∶= −T ′(A)
6: else if both T2(A) and T2(B) are undefined then
7: T ′(A) is undefined ; T ′(B) is undefined
8: end if
9: end for

10: return T ′

18



www.manaraa.com

which, given Lemma 13 and the fact that ∑Ain −∑Aout = 0, is in turn equivalent to the constraint a = b. This
implies the following equalities:

[[[Poly(Constraints(T ) ∪ {a = b})]]]A′in,out
= Poly(Constraints(T1) ∪ {A′

in =A′
out})

= Poly(Constraints(T2))
= Poly(T2)

Hence, if T is a principal typing for N , then T2 is a principal typing for Bind({a, b},N). It remains to show
that T ′ as defined in algorithm BindOneEff is the tight version of T2.

We define an additional typing T3 ∶ P(A′
in,out) → I(R) as follows. For every A ⊆A′

in,out for which T2(A)
is defined, let the objective θA be ∑(A ∩A′

in) −∑(A ∩A′
out) and let:

T3(A) ∶= [r, s] where r = min θA and s = max θA relative to Constraints(T2).

T3 is obtained from T2 in an “expensive” process, because it uses a linear-programming algorithm to mini-
mize/maximize the objectives θA. Clearly Poly(T2) = Poly(T3). Moreover, T3 is guaranteed to be tight by the
definitions and results in Section 2 – we leave to the reader the straightforward details showing that T3 is tight.
In particular, for every A ⊆ A′

in,out for which T2(A) is defined, it holds that T3(A) ⊆ T2(A). Hence, for every
A ⊎B =A′

in,out for which T2(A) and T2(B) are both defined:

(7) T3(A) ⊆ T2(A) ∩ −T2(B),

since T3(A) = −T3(B) by Lemma 13. Keep in mind that:

(8) Poly(T3) is the largest polytope satisfying Constraints(T2),

and every other polytope satisfying Constraints(T2) is a subset of Poly(T3). We define one more typing
T4 ∶ P(A′

in,out) → I(R) by appropriately restricting T2; namely, for every two-part partition A ⊎B =A′
in,out:

T4(A) ∶=
⎧⎪⎪⎨⎪⎪⎩

T2(A) ∩ −T2(B) if both T2(A) and T2(B) are defined,
undefined if both T2(A) and T2(B) are undefined.

Hence, Poly(T4) satisfies Constraints(T2), so that also for every A ⊆ A′
in,out for which T4(A) is defined, we

have T3(A) ⊇ T4(A), by (8) above. Hence, for every A ⊎ B = A′
in,out for which T4(A) and T4(B) are both

defined, we have:

(9) T3(A) ⊇ T4(A) = −T4(B) = T2(A) ∩ −T2(B).

Putting (7) and (9) together:

T2(A) ∩ −T2(B) ⊆ T3(A) ⊆ T2(A) ∩ −T2(B),

which implies T3(A) = T2(A) ∩ −T2(B) = T4(A). Hence, also, for every A ⊆ A′
in,out for which T3(A) is

defined, T3(A) = T4(A). This implies Poly(T3) = Poly(T4) and that T4 is tight. T4 is none other than T ′ in
algorithm BindOneEff, thus concluding the proof of the first part in the conclusion of the proposition. For the
second part, it is readily checked that if T is a total typing, then so is T ′ (details omitted).

19



www.manaraa.com

Complexity of BindOneEff. We estimate the run-time of BindOneEff as a function of:

• ∣Ain,out∣, the number of outer arcs,

• ∣T ∣, the number of assigned types in the initial typing T .

We consider each of the three parts separately:

1. The first part, line 1, runs inO(∣Ain,out∣⋅∣T ∣) time, according to the following reasoning. Suppose the types
of T are organized as a list with ∣T ∣ entries, which we can scan from left to right. The algorithm removes
every type assigned to a subset A ⊆ Ain,out intersecting {a, b}. There are ∣T ∣ types to be inspected, and
the subset A to which T (A) is assigned has to be checked that it does not contain a or b. The resulting
intermediate typing T1 is such that ∣T1∣ ⩽ ∣T ∣.

2. The second part of BindOneEff, line 2, runs in O(∣A′
in,out∣ ⋅ ∣T1∣) time. It inspects each of the ∣T1∣

types, looking for one assigned to A′
in,out, each such inspection requiring ∣A′

in,out∣ comparison steps. If
it finds such a type, it replaces it by [0,0]. If it does not find such a type, it adds the type assignment
{A′

in,out ↦ [0,0]}. The resulting intermediate typing T2 is such that ∣T2∣ = ∣T1∣ or ∣T2∣ = 1 + ∣T1∣.

3. The third part, from line 3 to line 9, runs in O(∣A′
in,out∣ ⋅ ∣T2∣2) time. For every type T2(A), it looks for a

type T2(B) in at most ∣T2∣ scanning steps, such that A⊎B =A′
in,out in at most ∣A′

in,out∣ comparison steps;
if and when it finds a type T2(B), which is guaranteed to be defined, it carries out the operation in line 4.

Adding the estimated run-times in the three parts, the overall run-time of BindOneEff isO(∣Ain,out∣ ⋅ ∣T ∣2). Let
δ = ∣Ain,out∣ ⩾ 2. In the particular case when T is a total typing which therefore assigns a type to each of the 2δ

subsets of Ain,out, the overall run-time of BindOneEff is O(δ ⋅ 22δ).
Note there are no arithmetical steps (addition, multiplication, etc.) in the execution of BindOneEff; besides

the bookkeeping involved in partitioning A′
in,out in two disjoint parts, BindOneEff uses only comparison of

numbers in line 4.

9 A ‘Compositional’ Algorithm for Computing the Principal Typing

We call a non-empty finite set of networks a network collection and use the mnemonic NC, possibly decorated,
to denote it. Let NC be a network collection. We obtain another collection NC′ from NC in one of two cases:

1. There is a memberM ∈ NC, whose set of outer arcs is Ain,out, and there is a pair of input/output arcs
{a, b} ⊆Ain,out such that:

NC′ ∶= (NC − {M}) ∪ {Bind({a, b},M)}.

In words, NC′ is obtained from NC by binding an input/output pair in the same memberM of NC.
More succintly, we write for this first case:

NC′ ∶= Bind({a, b},M,NC).

2. There are two membersM,N ∈ NC, whose sets of outer arcs are Ain,out and Bin,out, respectively, and
there is a pair of input/output arcs {a, b} with a ∈Ain,out and b ∈ Bin,out such that:

NC′ ∶= (NC − {M,N}) ∪ {Bind({a, b}, (M ∥N))}.

In words, NC′ is obtained from NC by binding an input/output pair between two different membersM
and N of NC. More succintly, we write for this second case:

NC′ ∶= Bind({a, b},M,N ,NC).

20



www.manaraa.com

For brevity, we may also write NC′ ∶= Bind({a, b},NC), meaning that NC′ is obtained according to one of
the two cases above.

LetN = (N,A) a flow network with n ⩾ 1 nodes, N = {ν1, . . . , νn}. We “decompose”N into a collection
of one-node networks, denoted BreakUp(N), as follows:

BreakUp(N) ∶= {N1, . . . ,Nn}

where, for every 1 ⩽ i ⩽ n, network Ni is defined by:

Ni ∶= ({νi},Ai) where Ai = {a ∈A ∣ head(a) = νi or tail(a) = νi }.

Every input arc a ∈Ain in the originalN remains an input arc in one of the one-node networks in BreakUp(N);
specifically, if head(a) = νi, for some 1 ⩽ i ⩽ n, then a is an input arc ofNi. Similarly every output arc b ∈Aout
in the original N remains an output arc in one of the one-node networks in BreakUp(N).

Let a ∈ A# be an internal arc in the original N , with tail(a) = νi and head(a) = νj where i ≠ j. We
distinguish between a as an output arc of Ni, and a as an input arc of Nj , by writing a− for the former (“a− is
an output arc of Ni”) and a+ for the latter (“a+ is an input arc of Nj”).

Lemma 28 (Rebuilding a Network from its One-Node Components). LetN = (N,A) be a flow network, with
∣N∣ = n and ∣A#∣ = m. Let N be connected, i.e., for every two distinct nodes ν, ν′ ∈ N, there is an undirected
path between ν and ν′. If σ = b1b2⋯bm is an ordering of all the internal arcs in A#, then

{N} = Bind({b+1 , b−1}, (Bind({b+2 , b−2}, ⋯ (Bind({b+m, b−m},BreakUp(N))))))

i.e., we can reconstruct N from its one-node components with m binding operations.

Proof. Straightforward from the definitions preceding the proposition.

Algorithm 5 is invoked by its name CompPT and uses: algorithm OneNodePT in Section 6, the operation
⊕t in Section 7, and algorithm BindOneEff in Section 8. CompPT takes two arguments: a flow network N
which is assumed to be connected, and an ordering σ = b1b2⋯bm of N ’s internal arcs which we call a binding
schedule.

Theorem 29 (Inferring Tight, Total, and Principal Typings). LetN be a flow network and σ = b1b2⋯bm be an
ordering of all the internal arcs of N . Then the typing T = CompPT(N , σ) is tight, total, and principal, for
network N .

Proof. Consider the intermediate collection NCk of networks, and the corresponding collection Tk of typings,
in algorithm CompPT. It suffices to show that, for every k = 0,1,2, . . . ,m, the set Tk contains only tight and
total typings, which are moreover each principal for the corresponding network in the collection NCk. This is
true for k = 0 by Proposition 20, and is true again for each k ⩾ 1 by Proposition 25 and Proposition 27.

Let N be a network and Ain,out its set of outer arcs. We define the measure degree(N) ∶= ∣Ain,out∣, which
is the number of outer arcs of N . Let NC be a network collection. We define:

maxDegree(NC) ∶= max{degree(N) ∣ N ∈NC}.

The sequence of network collections ⟨NCi ∣0 ⩽ i ⩽ m⟩ ∶= ⟨NC0,NC1, . . . ,NCm⟩ thus depends on the
binding sequence σ. We indicate this fact by saying that ⟨NCi ∣0 ⩽ i ⩽ m⟩ is induced by σ. We write ⟨NCi⟩
instead of ⟨NCi ∣0 ⩽ i ⩽m⟩ for brevity. If σ′ is another binding sequence, it induces another sequence ⟨NC′

i⟩
of network collections. Clearly, NC0 = NC′

0 and NCm = NC′
m = {N}, while the intermediate network

collections are generally different in the two sequences. We define

maxDegree(⟨NCi⟩) ∶= max{maxDegree(NC) ∣NC ∈ ⟨NCi⟩ }

21



www.manaraa.com

Algorithm 5 Calculate Tight, Total, and Principal Typing for Network N in Compositional Mode

algorithm name: CompPT
input: N = (N,A) and an ordering σ = b1b2⋯bm of the internal arcs of N ,

where N = {ν1, ν2, . . . , νn}, A =Ain,out ⊎A#, and A# = {b1, b2, . . . , bm}
output: tight, total, and principal typing T for N

1: NC0 ∶= {N1,N2, . . . ,Nn}
where {N1,N2, . . . ,Nn} = BreakUp(N)

2: T0 ∶= {T1, T2, . . . , Tn}
where {T1, T2, . . . , Tn} = {OneNodePT(N1),OneNodePT(N2), . . . ,OneNodePT(Nn)}

3: for every k = 1,2, . . . ,m do
4: if b+k and b−k are in the same componentMi ∈NCk−1 then
5: NCk ∶= Bind({b+k , b−k},Mi,NCk−1)
6: Tk ∶= (Tk−1 − {Ti}) ∪ {BindOneEff({b+k , b−k}, Ti)}
7: else if b+k and b−k are in distinct componentsMi,Mj ∈NCk−1 then
8: NCk ∶= Bind({b+k , b−k},Mi,Mj ,NCk−1)
9: Tk ∶= (Tk−1 − {Ti, Tj}) ∪ {BindOneEff({b+k , b−k}, (Ti ⊕t Tj))}

10: end if
11: end for
12: T ∶= T ′ where {T ′} = Tm

13: return T

22



www.manaraa.com

and similarly for maxDegree(⟨NC′
i⟩). We say the binding sequence σ is optimal if for every other binding

sequence σ′ :

maxDegree(⟨NCi⟩) ⩽ maxDegree(⟨NC′
i⟩)

where ⟨NCi⟩ and ⟨NC′
i⟩ are induced by σ and σ′, respectively. Let δ = maxDegree(⟨NCi⟩). We call δ the

index of the binding schedule σ.

Complexity of CompPT. We estimate the run-time complexity of CompPT by the number of types it has
to compute, i.e., by the total number of assignments made by the typings in T0,T1,T2, . . . ,Tm.

We ignore the effort to define the initial collection NC0 and then to update it to NC1,NC2, . . . ,NCm.
In fact, beyond the initial NC0, which we use to define the initial set of typings T0, the remaining collections
NC1,NC2, . . . ,NCm play no role in the computation of the final typing T returned by CompPT; we included
them in the algorithm for clarity and to make explicit the correspondence between Tk and NCk (which is used
in the proof of Theorem 29).

The run-time complexity of CompPT depends on N as well as on the binding schedule, i.e., the ordering
σ = b1b2⋯bm of all the internal arcs of N which specifies the order in which CompPT must re-connect each
of the m arcs that are initially disconnected. Let δ be the index of σ.

There are at most n ⋅ 2δ type assignments in T0 in line 2. In the for-loop from line 3 to line 11, CompPT
calls BindOneEff once in each of m iterations, for a total of m calls. Each such call to BindOneEff runs
in time O(δ ⋅ 22δ) according to the analysis in Section 8. Hence, the run-time complexity of CompPT is
O(n ⋅ 2δ +m ⋅ δ ⋅ 22δ) or also O((m + n) ⋅ δ ⋅ 22δ).

Moreover, if the binding sequence σ is optimal, this upper-bound is generally the best for CompPT as-
symptotically. Of course, this upper-bound is dominated by the exponential 22δ. For certain graph topologies,
the parameter δ can be kept “small”, i.e., much smaller than (m + n), as we mention in Section 11. And if in
addition m = O(n), then CompPT runs in time linear in n.

10 A ‘Compositional’ Algorithm for Computing the Maximum-Flow Value

Algorithm CompMaxFlow below calls CompPT of the preceding section as a subroutine. As a consequence,
given a network N as input argument, CompMaxFlow runs optimally if the call CompPT(N , σ) uses an
optimal binding schedule σ, as defined at the end of Section 9.

We delay to a later report our examination of the possible alternatives for computing an optimal, or near-
optimal, binding schedule. For our purposes here, we assume the existence of an algorithm BindingSch which,
given a network N as input argument, returns an optimal binding schedule σ for N .

Algorithm 6 Calculate Maximum-Flow Value for Network N in Compositional Mode

algorithm name: CompMaxFlow
input: N = (N,A), with a single input arc ain and a single output arc aout

output: maximum-flow value for N

1: σ ∶= BindingSch(N)
2: T ∶= CompPT(N , σ)
3: [r, r′] ∶= T ({ain})
4: return r′

23



www.manaraa.com

Under the assumption that the network N , given as input argument to CompMaxFlow, has a single input
arc ain and a single output arc aout, the types assigned by T = CompMaxFlow(N) are of the form:

ain ∶ [r, r′] − aout ∶ [−r′,−r] ain − aout ∶ [0,0]

where r and r′ are the values of a minimum feasible flow and a maximum feasible flow inN , respectively. To-
gether with the definition of tight principal typings in Sections 3 and 4, this immediately implies the correctness
of algorithm CompMaxFlow.

Complexity of CompMaxFlow. The run-time complexity of CompMaxFlow is that of BindingSch(N)
plus that of CompPT(N). In a follow-up report, we intend to examine different ways of efficiently imple-
menting algorithm BindingSch that returns an optimal, or near-optimal, binding schedule σ.

11 Special Cases

We briefly discuss a graph topology for which we can choose a binding schedule σ that makes both CompPT
in Section 9 and CompMaxFlow in Section 10 run efficiently. This is work in progress and only partially
presented here. There are other such graph topologies, whose examination we intend to take up in a follow-up
report. We simplify our discussion below by assuming that, in all graph topologies under consideration:

• there is no node of degree ⩽ 2,

• there is no node with only input arcs,

• there is no node with only output arcs.

Thus, the degree of every node is ⩾ 3 with its incident arcs including both inputs and outputs. We also assume:

• the graph is bi-connected, with exactly one input arc (or source) and exactly one output arc (or sink).

As far as the maximum-flow problem is concerned, there is no loss of generality from these various assumptions.
To simplify our discussion even further, we make one further assumption, though not essential:

• all lower-bound capacities on all arcs are zero.

This last assumption is common in other studies on maximum flow and makes it easier to compare our approach
with other approaches.

Outerplanar Networks The qualifier outerplanar is usually applied to undirected graphs. We adapt it to a
network N = (N,A) as follows. Let G be the underlying graph of N where all arcs are inserted without their
directions; in particular, if both ⟨ν, ν′⟩ and ⟨ν′, ν⟩ are directed arcs inN , then G merges the two into the single
undirected arc {ν, ν′}. We say the networkN is outerplanar if its undirected underlying graphG is outerplanar.

The (undirected) graph G is outerplanar if it can be embedded in the plane in such a way that all the nodes
are on the outermost face, i.e., the outermost boundary of the graph. Put differently, the graph is fully dismantled
by removing all the nodes (and arcs incident to them) that are on the outermost face. In an outerplanar graph,
an arc other than an input/output arc is of three kinds:

(1) a bridge, if its deletion disconnects the graph,

(2) a peripheral arc, if it is not a bridge and it occurs on the outermost boundary,

(3) a chord, if it is not a bridge and it is not peripheral.

24



www.manaraa.com

Under our assumption that the graph is bi-connected, there are no bridges and there are only peripheral arcs and
chordal arcs. Although for a planar graph in general there may exist several non-isomorphic embeddings in the
plane, for an outerplanar graph the embedding is unique [20], which in turn implies that the classification into
peripheral and chordal arcs is uniquely determined.7

With the assumptions that every node in G has degree ⩾ 3, that G is bi-connected, and that the outermost
boundary ofG is the (unique) Hamiltonian cycle [20], every face of the outerplanar graphG is either triangular
or quadrilateral. We can therefore view an outerplanar graph as a finite sequence of adjacent triangular faces
and quadrilateral faces. There is a triangular face at each end of the sequence, with the undirected input arc
(resp. output arc) incident to the apex of the triangular face on the left (resp. on the right).

We transform G into another undirected graph G′ where every node is of degree = 3. Specifically, if node
ν is incident to arcs {ν, ν1},{ν, ν2}, . . . ,{ν, νd} where d ⩾ 4, then we perform the following steps:

1. Split ν into (d − 2) nodes, denoted ν(1), ν(2), . . . , ν(d−2). If we identify ν(1) with ν, this means that we
add (d − 3) new nodes.

2. Insert (d − 3) new arcs {ν(1), ν(2)},{ν(2), ν(3)}, . . . ,{ν(d−3), ν(d−2)}.
We call these the auxiliary arcs of G′, to distinguish them from the original arcs in G.

3. Rename the original arc {ν, ν1} as {ν(1), ν1}, rename the original arc {ν, νd} as {ν(d−2), νd},
and, for every 2 ⩽ i ⩽ d − 1, rename the original arc {ν, νi} as {ν(i−1), νi}.

Clearly,G is obtained fromG′ by deleting all auxiliary arcs and merging {ν(1), ν(2), . . . , ν(d−2)} into the single
node ν. From the construction, G′ is an outerplanar graph in the form of a sequence of adjacent quadrilateral
faces, plus one triangular face at the left end and one triangular face at the right end. Put differently, G′ is a
grid of size 2 × ((n′/2) − 1) where n′ is the number of nodes in G′, i.e., G′ consists of two rows each with
((n′/2) − 1) nodes with a triangular face at each end of the grid.

Lemma 30. Let m be the total number of peripheral and chordal arcs in G and n the total number of nodes
in G. Let m′ be the total number of peripheral and chordal arcs in G′ and n′ the total number of nodes in G′.
Conclusion: m′ ⩽ 3 ⋅m + 2 and n′ = (2/3) ⋅ (m′ + 1).

Proof. Let mc be the number of chords in G and m′
c the number of chords in G′. By construction, mc = m′

c.
Let mp be the number of peripheral arcs in G and m′

p the number of peripheral arcs in G′. In general, mp is
smaller than m′

p. But the following relationship is easily checked:

m′
p = 2 ⋅m′

c + 2 = 2 ⋅mc + 2,

where the “2” added on the right of the equality accounts for the apex nodes of the two triangular faces at both
end of G′. It follows that we have the following sequence of three equalities and one inequality:

m′ = m′
c +m′

p = mc + 2 ⋅mc + 2 = 3 ⋅mc + 2 ⩽ 3 ⋅m + 2,

which proves the first part of the conclusion. The second part is calculated from the fact that, excluding the
triangular faces at both ends of G′, there is a total of 2 ⋅ (m′ − 2)/3 nodes. Adding the two apex nodes at both
ends, we get:

2 + 2 ⋅ (m′ − 2)/3 = 6 + 2 ⋅m′ − 4

3
= (2/3) ⋅ (m′ + 1),

which is the desired conclusion.
7We use the expressions “peripheral arc” and “chordal arc” here not to confuse them with the expressions “internal arc” and “outer

arc” in earlier sections. The set of all peripheral arcs and all chordal arcs here is exactly the set of internal arcs.

25



www.manaraa.com

From the undirected outerplanar graph G′, we define a new network N ′ = (N′,A′), with flow capacities
c′,c′ ∶A′ → R+, as follows:

1. The set N′ of nodes in N ′ is identical to the set of nodes in G′.

2. Every undirected original arc in G′, and therefore in G, is given the direction it had in N and then
included in A′. In particular, if {ν, ν′} in G and G′ is the result of merging ⟨ν, ν′⟩ and ⟨ν′, ν⟩ inN , then
both ⟨ν, ν′⟩ and ⟨ν′, ν⟩ are included in A′. Hence, A ⊆A′.

3. Every undirected auxiliary arc of the form {ν(i), ν(i+1)} in G′ is split into two directed auxiliary arcs in
N ′, namely, ⟨ν(i), ν(i+1)⟩ and ⟨ν(i+1), ν(i)⟩.

4. The flow capacities of every original arc a ∈ A in N are preserved in N ′, i.e., c′(a) = c(a) = 0 and
c′(a) = c(a).

5. The flow capacities of every auxiliary arc a ∈A′−A inN ′ are defined by setting c′(a) = 0 and c′(a) =K,
where K is a “very large number”.

Just as G is obtained from G′ by contracting all undirected auxiliary arcs, so is N obtained from N ′ by
contracting all directed auxiliary arcs.

Lemma 31. Let N ′ = (N′,A′) be the network just defined from the outerplanar N .

1. Every maximum flow f ∶A→ R+ in N can be extended to a maximum flow f ′ ∶A′ → R+ in N ′.

2. Every maximum flow f ′ ∶A′ → R+ in N ′ restricted to A is a maximum flow [[[f ′]]]A ∶A→ R+ in N .

Hence, to determine a maximum flow in N it suffices to determine a maximum flow in N ′.

Proof. This is a straightforward consequence of the construction of N ′ preceding the lemma, because all aux-
iliary arcs in N ′ put no restriction on the flow. We omit all the details.

Lemma 32. Let N ′ be the outerplanar network defined by the construction preceding Lemma 31. There is a
binding schedule σ for N ′ with index δ = 11.

Proof. We view G′ as a sequence of adjacent quadrilateral faces, from left to right, with a single triangular face
at each end. Excluding the apex node ν1 of the triangular face on the left, and the apex node νn′ of the triangular
face on the right, we list the vertical chords from left to right as:

{ν2, ν3}, {ν4, ν5}, . . . , {νn′−2, νn′−1}.

An undirected arc in G′ corresponds to one or two directed arcs in N ′. Hence, because every node in G′ has
degree = 3, the degree of every node in N ′ is ⩽ 6. We define the desired binding schedule in such a way that
N ′ is re-assembled in stages, from its one-node components, from left to right. Each stage comprises between
3 and 6 bindings.

More specifically, at the end of stage k ⩾ 1, we have re-bound all the arcs to the left of chord {νk, νk+1} but
none to the right of {νk, νk+1} yet. Also, at the end of stage k ⩾ 1, we have re-bound ⟨νk, νk+1⟩ or ⟨νk+1, νk⟩ or
both, according to which of these three cases occur in the original network N . At stage k + 1, we re-bind the
one or two directed arcs corresponding to each of the undirected:

(1) peripheral arc {νk, νk+2},

(2) peripheral arc {νk+1, νk+3}, and

(3) chordal arc {νk+2, νk+3},

26



www.manaraa.com

in this order. It is now straightforward to check that the number of input/output arcs in every of the intermediate
networks, in the course of re-assembling N ′ from its one-node components, does not exceed 11.

Theorem 33. Let N = (N,A) be an outerplanar network with a single input arc and a single output arc. Let
m be the total number of internal arcs in N . Conclusion: We can compute the value of a maximum flow in N
in time O(m).

Proof. By Lemma 31, we can deal with N ′ instead of N in order to find a maximum-flow value in N . By
Lemma 30, the total number m′ of internal arcs and the total number n′ of nodes in N ′ are both O(m). By
the complexity analysis at the end of Section 9, together with Lemma 32, we can find a maximum-flow value
in N ′ in time O((m′ + n′) ⋅ δ ⋅ 22δ) and therefore in time O(m).

k-Outerplanar Networks A graph is k-outerplanar for some k ⩾ 1 if it can be embedded in the plane in such
a way that it can be fully dismantled by k repetitions of the process of removing all the nodes (and arcs incident
to them) that are on the outermost face. Put differently, if we remove all the nodes on the outermost face (and
arcs incident to them), we obtain a (k − 1)-outerplanar graph. An outerplanar graph is 1-outerplanar.

Every planar graph is k-outerplanar for some k ⩾ 1. We delay to a follow-up report an extension of the
preceding analysis for outerplanar networks to k-outerplanar networks in general, also using recent efficient
algorithms to determine the smallest outerplanarity index k [8, 16].

12 Future Work

In both Sections 10 and 11, we mentioned several issues in our approach that are under current examination.
All of these are related – and limited in one way or another – to the use of total typings: Algorithm CompPT
returns a total tight and principal typing, whereas tight and principal typings in general do not have to be total.
The same limitation applies to algorithm CompMaxFlow, which calls CompPT.

Being forced to work with total typings, the run-time complexity of these algorithms is excessive, unless it
is possible to couple their execution with binding schedules that have small indeces, as discussed in Sections 9,
10, and 11. It is very likely that, if these algorithms could be adapted to work with partial typings, then their
run-time complexity would be reduced to feasible (or low-degree polynomial) bounds and their execution less
dependent on the existence and calculation of small-index binding schedules.

Hence, beyond the issues mentioned in Sections 10 and 11 for further examination, and more fundamentally,
we need to tackle the problem of how to calculate partial tight and principal typings. In the definition and
proposition below, we use the notation and conventions of Sections 3 and 4.

Definition 34 (Redundant and Non-Redundant Typings). Let T ∶ P(Ain,out) → I(R) be a tight typing satis-
fying two conditions:8

1. For every a ∈Ain,out, the type assignment T ({a}) is defined.

2. T (Ain,out) = [0,0].

For A ⊆Ain,out with 2 ⩽ ∣A∣ < ∣Ain,out∣, define the typing U ∶ P(Ain,out) → I(R) from T by omitting the type
which T assigns to A, i.e., if T (A) = [r, s], then:

U ∶= T − {A ∶ [r, s]}.

We say the type assignment T (A) is redundant if Poly(U) = Poly(T ). Informally, omitting T (A) from T does
not affect Poly(T ).

8These conditions are not essential. They are included to match the same conditions elsewhere in this report, and to simplify a little
the statement of Proposition 35. Note that we restrict the definition of “redundant” and “non-redudndant” to tight types and typings.

27



www.manaraa.com

We say the typing T is redundant if it makes one or more redundant type assignments. Keep in mind that
we limit the definition to type assignments T (A) where {a} ⊊ A ⊊Ain,out for every a ∈Ain,out.

We say the typing T is non-redundant if T makes no redundant type assignments. Informally, T is non-
redundant if no type assignment T (A) with 2 ⩽ ∣A∣ < ∣Ain,out∣ can be omitted from the definition of T , without
changing Poly(T ) to another polytope properly containing Poly(T ). ◻
Proposition 35. Let T ∶ P(Ain,out) → I(R) be a tight and non-redundant typing, as in Definition 34. Let
a ∈ Ain and b ∈ Aout. Let U be the tight and non-redundant typing equivalent to T ′ = BindOne({a, b}, T )
where BindOne is defined in Section 8. Conclusion: The number of types assigned by U is not greater than
the number of types assigned by T .

Proof. Let C = Constraints(T ) and C ′ = Constraints(T ′). Every type T (A) contributes two constraints,
Tmin⩾ (A) and Tmax⩽ (A), both defined in (4) in Section 3. Let T ({a}) = [r1, r2] and −T ({b}) = [s1, s2], which
correspond to four constraints:

Tmin
⩾ ({a}) = {a ⩾ r1}, Tmax

⩽ ({a}) = {a ⩽ r2}, Tmin
⩾ ({b}) = {−b ⩾ s1}, Tmax

⩽ ({b}) = {−b ⩽ s2}.

Let t1 = max{r1,−s2} and t2 = min{r2,−s1}. Reviewing the definition of BindOne, the typing T ′ is tight and
total, such that Poly(C ′) = Poly(T ′) is also defined by the set of constraints:

D ∶= (C − {a ⩾ r1, a ⩽ r2, −b ⩾ s1, −b ⩽ s2}) ∪ {a = b} ∪ {a ⩾ t1, a ⩽ t2},

i.e., D is obtained from C by omitting 4 constraints and adding 4 constraints. We thus have Poly(D) =
Poly(C ′) = Poly(T ′) and the number of constraints in D is the same as the number of constraints in C . This
implies that the tight and non-redundant typing U , which is equivalent to T ′, makes at most as many type
assignments as T .

The tight and non-redundant typing U in the statement of Proposition 35 can be obtained from the typing
T ′ = BindOne({a, b}, T ) by standard techniques of linear programming, but this is precisely what we want to
avoid because of its prohibitive cost. Hence, left to future work is to discover an efficient approach for finding
the new tight and non-redundant typing U after each binding step. Moreover, given a tight and non-redundant
typing T ∶ P(Ain,out) → I(R), we need an efficient way to compute TrType(A,T ) for any A ⊆Ain,out in case
T (A) is not defined.

References

[1] R.K. Ahuja, T. L. Magnanti, and J.B. Orlin. Network Flows: Theory, Algorithms, and Applications.
Prentice Hall, Englewood Cliffs, N.J., 1993.

[2] Takao Asano and Yasuhito Asano. Recent Developments in Maximum Flow Algorithms. Journal of the
Operations Research Society of Japan, 43(1), March 2000.

[3] A. Bestavros and A. Kfoury. A Domain-Specific Language for Incremental and Modular Design of Large-
Scale Verifiably-Safe Flow Networks. In Proc. of IFIP Working Conference on Domain-Specific Lan-
guages (DSL 2011), EPTCS Volume 66, pages 24–47, Sept 2011.

[4] A. Bestavros, A. Kfoury, A. Lapets, and M. Ocean. Safe Compositional Network Sketches: Tool and Use
Cases. In IEEE Workshop on Compositional Theory and Technology for Real-Time Embedded Systems,
Wash D.C., December 2009.

[5] A. Bestavros, A. Kfoury, A. Lapets, and M. Ocean. Safe Compositional Network Sketches: The Formal
Framework. In 13th ACM HSCC, Stockholm, April 2010.

28



www.manaraa.com

[6] Bala G. Chandran and Dorit S. Hochbaum. A Computational Study of the Pseudoflow and Push-Relabel
Algorithms for the Maximum Flow Problem. Oper. Res., 57(2):358–376, March/April 2009.

[7] E.A. Dinic. Algorithm for Solution of a Problem of Maximum Flow in Networks with Power Estimation.
Soviet Mathematics Doklady, 11:1277–1280, 1970.

[8] Yuval Emek. k-Outerplanar Graphs, Planar Duality, and Low Stretch Spanning Trees. In Amos Fiat and
Peter Sanders, editors, Proceedings of 17th Annual European Symposium on Algorithms, ESA 2009, pages
203–214. LNCS 5757, Springer Verlag, September 2009.

[9] L.R. Ford and D.R. Fulkerson. Maximal Flow Through a Network. Canadian Journal of Mathematics,
8:399–404, 1956.

[10] Andrew V. Goldberg. A New Max-Flow Algorithm. Technical Report MIT/LCS/TM-291, Laboratory for
Computer Science, MIT, 1985.

[11] Andrew V. Goldberg. Recent Developments in Maximum Flow Algorithms (Invited Lecture). In SWAT
’98: Proceedings of the 6th Scandinavian Workshop on Algorithm Theory, pages 1–10. Springer Verlag,
1998.

[12] Andrew V. Goldberg. Two-Level Push-Relabel Algorithm for the Maximum Flow Problem. In Proceed-
ings of the 5th International Conference on Algorithmic Aspects in Information and Management, AAIM
’09, pages 212–225, Berlin, Heidelberg, 2009. Springer-Verlag.

[13] Andrew V. Goldberg and Satish Rao. Beyond the Flow Decomposition Barrier. J. ACM, 45(5):783–797,
September 1998.

[14] Andrew V. Goldberg and Robert E. Tarjan. A New Approach to the Maximum Flow Problem. In Pro-
ceedings of the 18th Annual ACM Symposium on the Theory of Computing, pages 136–146, 1986.

[15] Dorit S. Hochbaum. The Pseudoflow Algorithm: A New Algorithm for the Maximum-Flow Problem.
Oper. Res., 56(4):992–1009, July 2008.

[16] Frank Kammer. Determining the Smallest k Such That G Is k-Outerplanar. In Lars Arge, Michael
Hoffmann, and Emo Welzl, editors, Proceedings of 15th Annual European Symposium on Algorithms,
ESA 2007, pages 359–370. LNCS 4698, Springer Verlag, September 2007.

[17] A. Kfoury. A Domain-Specific Language for Incremental and Modular Design of Large-Scale Verifiably-
Safe Flow Networks (Part 1). Technical Report BUCS-TR-2011-011, CS Dept, Boston Univ, May 2011.

[18] A. Kfoury. The Denotational, Operational, and Static Semantics of a Domain-Specific Language for the
Design of Flow Networks. In Proc. of SBLP 2011: Brazilian Symposium on Programming Languages,
Sept 2011.

[19] A. Kfoury. A Typing Theory for Flow Networks (Part I). Technical Report BUCS-TR-2012-018, CS
Dept, Boston Univ, December 2012.

[20] Josef Leydold and Peter Stadler. Minimal Cycle Bases of Outerplanar Graphs. Electronic Journal of
Combinatorics, 5(R16), 1998.

[21] G. Mazzoni, S. Pallottino, and M.G. Scutella. The Maximum Flow Problem: A Max-Preflow Approach.
European Journal of Operational Research, 53:257–278, 1991.

[22] James B. Orlin. Max Flows in O(mn) Time, or Better. Pre-publication draft, October 2012.

29



www.manaraa.com

[23] A. Schrijver. Theory of Linear and Integer Programming. Wiley-Interscience Series in Discrete Mathe-
matics and Optimization, New York, USA, 1986.

[24] N. Soule, A. Bestavros, A. Kfoury, and A. Lapets. Safe Compositional Equation-based Modeling of
Constrained Flow Networks. In Proc. of 4th Int’l Workshop on Equation-Based Object-Oriented Modeling
Languages and Tools, Zürich, September 2011.

30


